Crafter.Graphics/implementations/Crafter.Graphics-Window_wayland.cpp
2025-11-26 00:00:50 +01:00

550 lines
No EOL
22 KiB
C++

/*
Crafter®.Graphics
Copyright (C) 2025 Catcrafts®
catcrafts.net
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License version 3.0 as published by the Free Software Foundation;
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
module;
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <linux/input-event-codes.h>
#include <xkbcommon/xkbcommon.h>
#include "../lib/xdg-shell-client-protocol.h"
#include "../lib/wayland-xdg-decoration-unstable-v1-client-protocol.h"
#include <string.h>
#include <linux/input.h>
#include <sys/mman.h>
#include <wayland-cursor.h>
#include <xkbcommon/xkbcommon.h>
#include <errno.h>
#include <fcntl.h>
#include <print>
#include <wayland-client.h>
#include <wayland-client-protocol.h>
module Crafter.Graphics:Window_wayland_impl;
import :Window;
import :RenderingElement;
import :MouseElement;
import std;
import :Types;
import :Shm;
import Crafter.Event;
using namespace Crafter;
WindowFramebuffer::WindowFramebuffer(std::uint_fast32_t width, std::uint_fast32_t height) : Window(width, height) {
}
WindowWayland::WindowWayland(std::uint_fast32_t width, std::uint_fast32_t height) : WindowFramebuffer(width, height) {
display = wl_display_connect(NULL);
if (display == NULL) {
std::cerr << "failed to create display" << std::endl;
}
wl_registry* registry = wl_display_get_registry(display);
wl_registry_add_listener(registry, &registry_listener, this);
if (wl_display_roundtrip(display) == -1) {
exit(EXIT_FAILURE);
}
if (shm == NULL || compositor == NULL || xdgWmBase == NULL) {
std::cerr << "no wl_shm, wl_compositor or xdg_wm_base support" << std::endl;
exit(EXIT_FAILURE);
}
surface = wl_compositor_create_surface(compositor);
xdgSurface = xdg_wm_base_get_xdg_surface(xdgWmBase, surface);
xdgToplevel = xdg_surface_get_toplevel(xdgSurface);
xdg_surface_add_listener(xdgSurface, &xdg_surface_listener, this);
xdg_toplevel_add_listener(xdgToplevel, &xdg_toplevel_listener, this);
wl_surface_commit(surface);
while (wl_display_dispatch(display) != -1 && !configured) {}
wl_surface_commit(surface);
zxdg_toplevel_decoration_v1* decoration = zxdg_decoration_manager_v1_get_toplevel_decoration(manager, xdgToplevel);
zxdg_toplevel_decoration_v1_set_mode(decoration, ZXDG_TOPLEVEL_DECORATION_V1_MODE_SERVER_SIDE);
// Create a wl_buffer, attach it to the surface and commit the surface
int stride = width * 4;
int size = stride * height;
// Allocate a shared memory file with the right size
int fd = create_shm_file(size);
if (fd < 0) {
fprintf(stderr, "creating a buffer file for %d B failed: %m\n", size);
}
// Map the shared memory file
framebuffer = reinterpret_cast<Pixel_BU8_GU8_RU8_AU8*>(mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0));
if (framebuffer == MAP_FAILED) {
fprintf(stderr, "mmap failed: %m\n");
close(fd);
}
// Create a wl_buffer from our shared memory file descriptor
wl_shm_pool *pool = wl_shm_create_pool(shm, fd, size);
buffer = wl_shm_pool_create_buffer(pool, 0, width, height, stride, WL_SHM_FORMAT_ARGB8888);
wl_shm_pool_destroy(pool);
// Now that we've mapped the file and created the wl_buffer, we no longer
// need to keep file descriptor opened
close(fd);
if (buffer == NULL) {
exit(EXIT_FAILURE);
}
wl_surface_attach(surface, buffer, 0, 0);
wl_surface_commit(surface);
}
WindowWayland::WindowWayland(std::uint_fast32_t width, std::uint_fast32_t height, const std::string_view title) : WindowWayland(width, height) {
xdg_toplevel_set_title(xdgToplevel, title.data());
}
WindowWayland::~WindowWayland() {
xdg_toplevel_destroy(xdgToplevel);
xdg_surface_destroy(xdgSurface);
wl_surface_destroy(surface);
wl_buffer_destroy(buffer);
}
void WindowWayland::StartSync() {
while (open && wl_display_dispatch(display) != -1) {
}
}
// Optimized pixel blending function using SIMD-like operations
inline void blend_pixel_optimized(Pixel_BU8_GU8_RU8_AU8& dst, const Pixel_BU8_GU8_RU8_AU8& src) {
float srcA = src.a / 255.0f;
float dstA = dst.a / 255.0f;
float outA = srcA + dstA * (1.0f - srcA);
if (outA > 0.0f) {
dst = {
static_cast<uint8_t>((src.b * srcA + dst.b * dstA * (1.0f - srcA)) / outA),
static_cast<uint8_t>((src.g * srcA + dst.g * dstA * (1.0f - srcA)) / outA),
static_cast<uint8_t>((src.r * srcA + dst.r * dstA * (1.0f - srcA)) / outA),
static_cast<uint8_t>(outA * 255)
};
}
}
// Optimized rendering with bounds checking and early exit
void WindowWayland::RenderElement(Transform* transform) {
RenderingElement* element = dynamic_cast<RenderingElement*>(transform);
if(element) {
#ifdef CRAFTER_TIMING
auto start = std::chrono::high_resolution_clock::now();
#endif
// Calculate clipping bounds
std::int_fast32_t clip_left = std::max(element->scaled.x, std::int_fast32_t(0));
std::int_fast32_t clip_top = std::max(element->scaled.y, std::int_fast32_t(0));
std::int_fast32_t clip_right = std::min(element->scaled.x + element->scaled.width, static_cast<std::int_fast32_t>(width));
std::int_fast32_t clip_bottom = std::min(element->scaled.y + element->scaled.height, static_cast<std::int_fast32_t>(height));
// Early exit if completely outside screen
if (clip_left >= clip_right || clip_top >= clip_bottom) {
#ifdef CRAFTER_TIMING
auto end = std::chrono::high_resolution_clock::now();
renderTimings.push_back({element, element->scaled.width, element->scaled.height, end-start});
#endif
return;
}
// Get source buffer data
const Pixel_BU8_GU8_RU8_AU8* src_buffer = element->bufferScaled.data();
std::uint_fast32_t src_width = element->scaled.width;
std::uint_fast32_t src_height = element->scaled.height;
// If element is opaque, we can simply copy pixels without blending
if (element->opaque) {
// Render clipped region
for (std::int_fast32_t y = clip_top; y < clip_bottom; y++) {
std::int_fast32_t src_y = y - element->scaled.y;
for (std::int_fast32_t x = clip_left; x < clip_right; x++) {
std::int_fast32_t src_x = x - element->scaled.x;
// Bounds check for source buffer
if (src_x >= 0 && src_x < static_cast<std::int_fast32_t>(src_width) && src_y >= 0 && src_y < static_cast<std::int_fast32_t>(src_height)) {
// Direct copy for opaque elements (skip blending)
framebuffer[y * width + x] = src_buffer[src_y * src_width + src_x];
}
}
}
} else {
// Render clipped region with blending for non-opaque elements
for (std::int_fast32_t y = clip_top; y < clip_bottom; y++) {
std::int_fast32_t src_y = y - element->scaled.y;
for (std::int_fast32_t x = clip_left; x < clip_right; x++) {
std::int_fast32_t src_x = x - element->scaled.x;
// Bounds check for source buffer
if (src_x >= 0 && src_x < static_cast<std::int_fast32_t>(src_width) && src_y >= 0 && src_y < static_cast<std::int_fast32_t>(src_height)) {
// Blend pixels
blend_pixel_optimized(framebuffer[y * width + x], src_buffer[src_y * src_width + src_x]);
}
}
}
}
#ifdef CRAFTER_TIMING
auto end = std::chrono::high_resolution_clock::now();
renderTimings.push_back({element, element->scaled.width, element->scaled.height, end-start});
#endif
}
std::sort(transform->children.begin(), transform->children.end(), [](Transform* a, Transform* b){ return a->z < b->z; });
for(Transform* child : transform->children) {
this->RenderElement(child);
}
}
void WindowWayland::Render() {
std::sort(elements.begin(), elements.end(), [](Transform* a, Transform* b){ return a->z < b->z; });
// Clear screen efficiently using memset
memset(framebuffer, 0, width * height * sizeof(Pixel_BU8_GU8_RU8_AU8));
for(Transform* child : elements) {
RenderElement(child);
}
wl_surface_attach(surface, buffer, 0, 0);
wl_surface_damage(surface, 0, 0, width, height);
wl_surface_commit(surface);
}
void WindowWayland::StartUpdate() {
cb = wl_surface_frame(surface);
wl_callback_add_listener(cb, &wl_callback_listener, this);
updating = true;
}
void WindowWayland::StopUpdate() {
updating = false;
}
void WindowWayland::SetTitle(const std::string_view title) {
xdg_toplevel_set_title(xdgToplevel, title.data());
}
void WindowWayland::Resize(std::uint_fast32_t width, std::uint_fast32_t height) {
}
void WindowWayland::Write(Pixel_BU8_GU8_RU8_AU8* pixels) {
std::memcpy(framebuffer, pixels, width*height*sizeof(Pixel_BU8_GU8_RU8_AU8));
}
void WindowWayland::Write(std::uint_fast32_t x, std::uint_fast32_t y, Pixel_BU8_GU8_RU8_AU8 pixel) {
framebuffer[y * width + x] = pixel;
}
Pixel_BU8_GU8_RU8_AU8 WindowWayland::Read(std::uint_fast32_t x, std::uint_fast32_t y) const{
return framebuffer[y * width + x];
}
const Pixel_BU8_GU8_RU8_AU8* WindowWayland::Read() const{
return framebuffer;
}
Pixel_BU8_GU8_RU8_AU8* WindowWayland::Get() {
return framebuffer;
}
void WindowWayland::Store() {
}
void WindowWayland::xdg_wm_base_handle_ping(void* data, xdg_wm_base* xdg_wm_base, std::uint32_t serial) {
xdg_wm_base_pong(xdg_wm_base, serial);
}
#ifdef CRAFTER_TIMING
std::chrono::time_point<std::chrono::high_resolution_clock> framEnd;
#endif
void WindowWayland::wl_surface_frame_done(void* data, struct wl_callback *cb, uint32_t time)
{
auto start = std::chrono::high_resolution_clock::now();
wl_callback_destroy(cb);
WindowWayland* window = reinterpret_cast<WindowWayland*>(data);
#ifdef CRAFTER_TIMING
window->vblank = duration_cast<std::chrono::milliseconds>(start - window->frameEnd);
#endif
if(window->updating) {
cb = wl_surface_frame(window->surface);
wl_callback_add_listener(cb, &WindowWayland::wl_callback_listener, window);
window->onUpdate.Invoke({start, start-window->lastFrameBegin});
#ifdef CRAFTER_TIMING
window->totalUpdate = std::chrono::nanoseconds(0);
window->updateTimings.clear();
for (const std::pair<const EventListener<FrameTime>*, std::chrono::nanoseconds>& entry : window->onUpdate.listenerTimes) {
window->updateTimings.push_back(entry);
window->totalUpdate += entry.second;
}
#endif
#ifdef CRAFTER_TIMING
auto renderStart = std::chrono::high_resolution_clock::now();
window->renderTimings.clear();
#endif
window->Render();
#ifdef CRAFTER_TIMING
auto renderEnd = std::chrono::high_resolution_clock::now();
window->totalRender = renderEnd - renderStart;
#endif
}
#ifdef CRAFTER_TIMING
window->frameEnd = std::chrono::high_resolution_clock::now();
window->frameTimes.push_back(window->totalUpdate+window->totalRender);
// Keep only the last 100 frame times
if (window->frameTimes.size() > 100) {
window->frameTimes.erase(window->frameTimes.begin());
}
#endif
window->lastFrameBegin = start;
}
void WindowWayland::pointer_handle_button(void* data, wl_pointer* pointer, std::uint32_t serial, std::uint32_t time, std::uint32_t button, std::uint32_t state) {
WindowWayland* window = reinterpret_cast<WindowWayland*>(data);
if (button == BTN_LEFT) {
if(state == WL_POINTER_BUTTON_STATE_PRESSED) {
window->mouseLeftHeld = true;
window->onMouseLeftClick.Invoke(window->currentMousePos);
for(MouseElement* element : window->mouseElements) {
if(window->currentMousePos.x >= element->scaled.x && window->currentMousePos.x <= element->scaled.x+element->scaled.width && window->currentMousePos.y > element->scaled.y && window->currentMousePos.y < element->scaled.y+element->scaled.height) {
element->onMouseLeftClick.Invoke({FractionalToMappedBoundless(static_cast<double>(window->currentMousePos.x - element->scaled.x) / element->scaled.width), FractionalToMappedBoundless(static_cast<double>(window->currentMousePos.y - element->scaled.y) / element->scaled.height)});
}
}
} else {
window->mouseLeftHeld = false;
window->onMouseLeftRelease.Invoke(window->currentMousePos);
for(MouseElement* element : window->mouseElements) {
if(window->currentMousePos.x >= element->scaled.x && window->currentMousePos.x <= element->scaled.x+element->scaled.width && window->currentMousePos.y > element->scaled.y && window->currentMousePos.y < element->scaled.y+element->scaled.height) {
element->onMouseLeftRelease.Invoke({FractionalToMappedBoundless(static_cast<double>(window->currentMousePos.x - element->scaled.x) / element->scaled.width), FractionalToMappedBoundless(static_cast<double>(window->currentMousePos.y - element->scaled.y) / element->scaled.height)});
}
}
}
} else if(button == BTN_RIGHT){
if(state == WL_POINTER_BUTTON_STATE_PRESSED) {
window->mouseRightHeld = true;
window->onMouseRightClick.Invoke(window->currentMousePos);
for(MouseElement* element : window->mouseElements) {
if(window->currentMousePos.x >= element->scaled.x && window->currentMousePos.x <= element->scaled.x+element->scaled.width && window->currentMousePos.y > element->scaled.y && window->currentMousePos.y < element->scaled.y+element->scaled.height) {
element->onMouseRightClick.Invoke({FractionalToMappedBoundless(static_cast<double>(window->currentMousePos.x - element->scaled.x) / element->scaled.width), FractionalToMappedBoundless(static_cast<double>(window->currentMousePos.y - element->scaled.y) / element->scaled.height)});
}
}
} else {
window->mouseRightHeld = true;
window->onMouseRightRelease.Invoke(window->currentMousePos);
for(MouseElement* element : window->mouseElements) {
if(window->currentMousePos.x >= element->scaled.x && window->currentMousePos.x <= element->scaled.x+element->scaled.width && window->currentMousePos.y > element->scaled.y && window->currentMousePos.y < element->scaled.y+element->scaled.height) {
element->onMouseRightRelease.Invoke({FractionalToMappedBoundless(static_cast<double>(window->currentMousePos.x - element->scaled.x) / element->scaled.width), FractionalToMappedBoundless(static_cast<double>(window->currentMousePos.y - element->scaled.y) / element->scaled.height)});
}
}
}
}
}
void WindowWayland::PointerListenerHandleMotion(void* data, wl_pointer* wl_pointer, uint time, wl_fixed_t surface_x, wl_fixed_t surface_y) {
WindowWayland* window = reinterpret_cast<WindowWayland*>(data);
MousePoint pos = {FractionalToMappedBoundless(wl_fixed_to_double(surface_x) / window->width), FractionalToMappedBoundless(wl_fixed_to_double(surface_y) / window->height)};
window->lastMousePos = window->currentMousePos;
window->currentMousePos = pos;
window->mouseDelta = {window->currentMousePos.x-window->lastMousePos.x, window->currentMousePos.y-window->lastMousePos.y};
window->onMouseMove.Invoke({window->lastMousePos, window->currentMousePos, window->mouseDelta});
for(MouseElement* element : window->mouseElements) {
if(window->currentMousePos.x >= element->scaled.x && window->currentMousePos.x <= element->scaled.x+element->scaled.width && window->currentMousePos.y > element->scaled.y && window->currentMousePos.y < element->scaled.y+element->scaled.height) {
element->onMouseMove.Invoke({FractionalToMappedBoundless(static_cast<double>(window->currentMousePos.x - element->scaled.x) / element->scaled.width), FractionalToMappedBoundless(static_cast<double>(window->currentMousePos.y - element->scaled.y) / element->scaled.height)});
if(!(window->lastMousePos.x >= element->scaled.x && window->lastMousePos.x <= element->scaled.x+element->scaled.width && window->lastMousePos.y > element->scaled.y && window->lastMousePos.y < element->scaled.y+element->scaled.height)) {
element->onMouseEnter.Invoke({FractionalToMappedBoundless(static_cast<double>(window->currentMousePos.x - element->scaled.x) / element->scaled.width), FractionalToMappedBoundless(static_cast<double>(window->currentMousePos.y - element->scaled.y) / element->scaled.height)});
}
} else if(window->lastMousePos.x >= element->scaled.x && window->lastMousePos.x <= element->scaled.x+element->scaled.width && window->lastMousePos.y > element->scaled.y && window->lastMousePos.y < element->scaled.y+element->scaled.height) {
element->onMouseLeave.Invoke({FractionalToMappedBoundless(static_cast<double>(window->currentMousePos.x - element->scaled.x) / element->scaled.width), FractionalToMappedBoundless(static_cast<double>(window->currentMousePos.y - element->scaled.y) / element->scaled.height)});
}
}
}
void WindowWayland::PointerListenerHandleEnter(void* data, wl_pointer* wl_pointer, uint serial, wl_surface* surface, wl_fixed_t surface_x, wl_fixed_t surface_y) {
WindowWayland* window = reinterpret_cast<WindowWayland*>(data);
window->onMouseEnter.Invoke({window->lastMousePos, window->currentMousePos, window->mouseDelta});
}
void WindowWayland::PointerListenerHandleLeave(void* data, wl_pointer*, std::uint32_t, wl_surface*) {
WindowWayland* window = reinterpret_cast<WindowWayland*>(data);
window->onMouseEnter.Invoke({window->lastMousePos, window->currentMousePos, window->mouseDelta});
}
void WindowWayland::PointerListenerHandleAxis(void*, wl_pointer*, std::uint32_t, std::uint32_t, wl_fixed_t value) {
}
void WindowWayland::keyboard_keymap(void *data, wl_keyboard *keyboard, uint32_t format, int fd, uint32_t size) {
WindowWayland* window = reinterpret_cast<WindowWayland*>(data);
if (format != WL_KEYBOARD_KEYMAP_FORMAT_XKB_V1) {
close(fd);
fprintf(stderr, "Unsupported keymap format\n");
return;
}
void *map = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, 0);
if (map == MAP_FAILED) {
close(fd);
perror("mmap");
return;
}
window->xkb_context = xkb_context_new(XKB_CONTEXT_NO_FLAGS);
window->xkb_keymap = xkb_keymap_new_from_string(window->xkb_context, (const char *)map, XKB_KEYMAP_FORMAT_TEXT_V1,XKB_KEYMAP_COMPILE_NO_FLAGS);
munmap(map, size);
close(fd);
window->xkb_state = xkb_state_new(window->xkb_keymap);
}
void WindowWayland::keyboard_enter(void *data, wl_keyboard *keyboard, uint32_t serial, wl_surface *surface, wl_array *keys) {
}
void WindowWayland::keyboard_leave(void *data, wl_keyboard *keyboard, uint32_t serial, wl_surface *surface) {
}
void WindowWayland::keyboard_key(void *data, wl_keyboard *keyboard, uint32_t serial, uint32_t time, uint32_t key, uint32_t state) {
WindowWayland* window = reinterpret_cast<WindowWayland*>(data);
if (!window->xkb_state) {
return;
}
xkb_keycode_t keycode = key + 8;
xkb_keysym_t keysym = xkb_state_key_get_one_sym(window->xkb_state, keycode);
char utf8[8] = {0};
int len = xkb_keysym_to_utf8(keysym, utf8, sizeof(utf8));
if (len != 0) {
char keypress = utf8[0];
if(state == WL_KEYBOARD_KEY_STATE_PRESSED) {
if(window->heldkeys[keypress]) {
window->onKeyHold[keypress].Invoke();
window->onAnyKeyHold.Invoke(keypress);
} else{
window->heldkeys[keypress] = true;
window->onKeyDown[keypress].Invoke();
window->onAnyKeyDown.Invoke(keypress);
}
} else{
window->heldkeys[keypress] = false;
window->onKeyUp[keypress].Invoke();
window->onAnyKeyUp.Invoke(keypress);
}
} else {
// // fallback for keys like Return, Escape, etc.
// char name[64];
// if (xkb_keysym_get_name(keysym, name, sizeof(name)) > 0) {
// printf("Key %s pressed (non-printable or multi-char)\n", name);
// }
}
}
void WindowWayland::keyboard_modifiers(void *data, wl_keyboard *keyboard, uint32_t serial, uint32_t mods_depressed, uint32_t mods_latched, uint32_t mods_locked, uint32_t group) {
}
void WindowWayland::keyboard_repeat_info(void *data, wl_keyboard *keyboard, int32_t rate, int32_t delay) {
}
void WindowWayland::seat_handle_capabilities(void* data, wl_seat* seat, uint32_t capabilities) {
WindowWayland* window = reinterpret_cast<WindowWayland*>(data);
window->seat = seat;
if (capabilities & WL_SEAT_CAPABILITY_POINTER) {
wl_pointer* pointer = wl_seat_get_pointer(seat);
wl_pointer_add_listener(pointer, &pointer_listener, window);
}
if (capabilities & WL_SEAT_CAPABILITY_KEYBOARD) {
wl_keyboard* keyboard = wl_seat_get_keyboard(seat);
wl_keyboard_add_listener(keyboard, &keyboard_listener, window);
}
}
void WindowWayland::handle_global(void *data, wl_registry *registry, std::uint32_t name, const char *interface, std::uint32_t version) {
WindowWayland* window = reinterpret_cast<WindowWayland*>(data);
if (strcmp(interface, wl_shm_interface.name) == 0) {
window->shm = reinterpret_cast<wl_shm*>(wl_registry_bind(registry, name, &wl_shm_interface, 1));
} else if (strcmp(interface, wl_seat_interface.name) == 0) {
wl_seat* seat = reinterpret_cast<wl_seat*>(wl_registry_bind(registry, name, &wl_seat_interface, 1));
wl_seat_add_listener(seat, &seat_listener, window);
} else if (compositor == NULL && strcmp(interface, wl_compositor_interface.name) == 0) {
compositor = reinterpret_cast<wl_compositor*>(wl_registry_bind(registry, name, &wl_compositor_interface, 1));
} else if (strcmp(interface, xdg_wm_base_interface.name) == 0) {
window->xdgWmBase = reinterpret_cast<xdg_wm_base*>(wl_registry_bind(registry, name, &xdg_wm_base_interface, 1));
xdg_wm_base_add_listener(window->xdgWmBase, &xdgWmBaseListener, NULL);
} else if (strcmp(interface, zxdg_decoration_manager_v1_interface.name) == 0) {
window->manager = reinterpret_cast<zxdg_decoration_manager_v1*>(wl_registry_bind(registry, name, &zxdg_decoration_manager_v1_interface, 1));
}
}
void WindowWayland::handle_global_remove(void* data, wl_registry* registry, uint32_t name) {
}
void WindowWayland::xdg_toplevel_configure(void*, xdg_toplevel*, std::int32_t, std::int32_t, wl_array*){
}
void WindowWayland::xdg_toplevel_handle_close(void* data, xdg_toplevel*) {
WindowWayland* window = reinterpret_cast<WindowWayland*>(data);
window->onClose.Invoke();
window->open = false;
}
void WindowWayland::xdg_surface_handle_configure(void* data, xdg_surface* xdg_surface, std::uint32_t serial) {
WindowWayland* window = reinterpret_cast<WindowWayland*>(data);
// The compositor configures our surface, acknowledge the configure event
xdg_surface_ack_configure(xdg_surface, serial);
if (window->configured) {
// If this isn't the first configure event we've received, we already
// have a buffer attached, so no need to do anything. Commit the
// surface to apply the configure acknowledgement.
wl_surface_commit(window->surface);
}
window->configured = true;
}