/* Crafter.Math Copyright (C) 2025 Catcrafts Catcrafts.net This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3.0 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ module; #include #include #include #include #include #include #include export module Crafter.Math:MatrixRowMajor; import :BasicTypes; import :Vector; import :Misc; namespace Crafter { export template class MatrixRowMajor { public: T m[RowSize][CollumSize*Repeats]; MatrixRowMajor() = default; MatrixRowMajor( float x0, float y0, float z0, float w0, float x1, float y1, float z1, float w1, float x2, float y2, float z2, float w2, float x3, float y3, float z3, float w3 ) requires(CollumSize == 4 && RowSize == 4 && Repeats == 1 && std::same_as) { m[0][0] = x0; m[0][1] = y0; m[0][2] = z0; m[0][3] = w0; m[1][0] = x1; m[1][1] = y1; m[1][2] = z1; m[1][3] = w1; m[2][0] = x2; m[2][1] = y2; m[2][2] = z2; m[2][3] = w2; m[3][0] = x3; m[3][1] = y3; m[3][2] = z3; m[3][3] = w3; } Vector operator*(Vector b) const requires(CollumSize == 4 && RowSize == 4 && Repeats == 1 && std::same_as) { return Vector( b.x * m[0][0] + b.y * m[1][0] + b.z * m[2][0] + m[3][0], b.x * m[0][1] + b.y * m[1][1] + b.z * m[2][1] + m[3][1], b.x * m[0][2] + b.y * m[1][2] + b.z * m[2][2] + m[3][2] ); } MatrixRowMajor operator*(MatrixRowMajor b) const requires(CollumSize == 4 && RowSize == 4 && Repeats == 1 && std::same_as) { MatrixRowMajor result; result.m[0][0] = b.m[0][0] * m[0][0] + b.m[0][1] * m[1][0] + b.m[0][2] * m[2][0] + b.m[0][3] * m[3][0]; result.m[1][0] = b.m[1][0] * m[0][0] + b.m[1][1] * m[1][0] + b.m[1][2] * m[2][0] + b.m[1][3] * m[3][0]; result.m[2][0] = b.m[2][0] * m[0][0] + b.m[2][1] * m[1][0] + b.m[2][2] * m[2][0] + b.m[2][3] * m[3][0]; result.m[3][0] = b.m[3][0] * m[0][0] + b.m[3][1] * m[1][0] + b.m[3][2] * m[2][0] + b.m[3][3] * m[3][0]; result.m[0][1] = b.m[0][0] * m[0][1] + b.m[0][1] * m[1][1] + b.m[0][2] * m[2][1] + b.m[0][3] * m[3][1]; result.m[1][1] = b.m[1][0] * m[0][1] + b.m[1][1] * m[1][1] + b.m[1][2] * m[2][1] + b.m[1][3] * m[3][1]; result.m[2][1] = b.m[2][0] * m[0][1] + b.m[2][1] * m[1][1] + b.m[2][2] * m[2][1] + b.m[2][3] * m[3][1]; result.m[3][1] = b.m[3][0] * m[0][1] + b.m[3][1] * m[1][1] + b.m[3][2] * m[2][1] + b.m[3][3] * m[3][1]; result.m[0][2] = b.m[0][0] * m[0][2] + b.m[0][1] * m[1][2] + b.m[0][2] * m[2][2] + b.m[0][3] * m[3][2]; result.m[1][2] = b.m[1][0] * m[0][2] + b.m[1][1] * m[1][2] + b.m[1][2] * m[2][2] + b.m[1][3] * m[3][2]; result.m[2][2] = b.m[2][0] * m[0][2] + b.m[2][1] * m[1][2] + b.m[2][2] * m[2][2] + b.m[2][3] * m[3][2]; result.m[3][2] = b.m[3][0] * m[0][2] + b.m[3][1] * m[1][2] + b.m[3][2] * m[2][2] + b.m[3][3] * m[3][2]; result.m[0][3] = b.m[0][0] * m[0][3] + b.m[0][1] * m[1][3] + b.m[0][2] * m[2][3] + b.m[0][3] * m[3][3]; result.m[1][3] = b.m[1][0] * m[0][3] + b.m[1][1] * m[1][3] + b.m[1][2] * m[2][3] + b.m[1][3] * m[3][3]; result.m[2][3] = b.m[2][0] * m[0][3] + b.m[2][1] * m[1][3] + b.m[2][2] * m[2][3] + b.m[2][3] * m[3][3]; result.m[3][3] = b.m[3][0] * m[0][3] + b.m[3][1] * m[1][3] + b.m[3][2] * m[2][3] + b.m[3][3] * m[3][3]; return result; } static MatrixRowMajor Perspective(float fovAngleY, float aspectRatio, float nearZ, float farZ) requires(CollumSize == 4 && RowSize == 4 && Repeats == 1 && std::same_as) { MatrixRowMajor M; float SinFov; float CosFov; XMScalarSinCos(&SinFov, &CosFov, 0.5f * fovAngleY); float Height = CosFov / SinFov; float Width = Height / aspectRatio; float fRange = farZ / (nearZ - farZ); M.m[0][0] = Width; M.m[0][1] = 0.0f; M.m[0][2] = 0.0f; M.m[0][3] = 0.0f; M.m[1][0] = 0.0f; M.m[1][1] = Height; M.m[1][2] = 0.0f; M.m[1][3] = 0.0f; M.m[2][0] = 0.0f; M.m[2][1] = 0.0f; M.m[2][2] = fRange; M.m[2][3] = -1.0f; M.m[3][0] = 0.0f; M.m[3][1] = 0.0f; M.m[3][2] = fRange * nearZ; M.m[3][3] = 0.0f; return M; } static MatrixRowMajor Identity() requires(CollumSize == 4 && RowSize == 4 && Repeats == 1 && std::same_as) { return MatrixRowMajor( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); } static MatrixRowMajor Scaling(float x, float y, float z) requires(CollumSize == 4 && RowSize == 4 && Repeats == 1 && std::same_as) { return MatrixRowMajor( x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 ); } static MatrixRowMajor Scaling(Vector vector) requires(CollumSize == 4 && RowSize == 4 && Repeats == 1 && std::same_as) { return Scaling(vector.x, vector.y, vector.z); } static MatrixRowMajor Translation(float x, float y, float z) requires(CollumSize == 4 && RowSize == 4 && Repeats == 1 && std::same_as) { return MatrixRowMajor( 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, x, y, z, 1 ); } static MatrixRowMajor Translation(Vector vector) requires(CollumSize == 4 && RowSize == 4 && Repeats == 1 && std::same_as) { return Translation(vector.x, vector.y, vector.z); } static MatrixRowMajor Rotation(float Pitch, float Yaw, float Roll) requires(CollumSize == 4 && RowSize == 4 && Repeats == 1 && std::same_as) { float cp = cosf(Pitch); float sp = sinf(Pitch); float cy = cosf(Yaw); float sy = sinf(Yaw); float cr = cosf(Roll); float sr = sinf(Roll); MatrixRowMajor M; M.m[0][0] = cr * cy + sr * sp * sy; M.m[0][1] = sr * cp; M.m[0][2] = sr * sp * cy - cr * sy; M.m[0][3] = 0.0f; M.m[1][0] = cr * sp * sy - sr * cy; M.m[1][1] = cr * cp; M.m[1][2] = sr * sy + cr * sp * cy; M.m[1][3] = 0.0f; M.m[2][0] = cp * sy; M.m[2][1] = -sp; M.m[2][2] = cp * cy; M.m[2][3] = 0.0f; M.m[3][0] = 0.0f; M.m[3][1] = 0.0f; M.m[3][2] = 0.0f; M.m[3][3] = 1.0f; return M; } static MatrixRowMajor LookAt(Vector eyePosition, Vector focusPosition, Vector upDirection) requires(CollumSize == 4 && RowSize == 4 && Repeats == 1 && std::same_as) { MatrixRowMajor M; Vector negEyeDirection = eyePosition - focusPosition; return LookTo(eyePosition, negEyeDirection, upDirection); return M; } static MatrixRowMajor LookTo(Vector eyePosition, Vector eyeDirection, Vector upDirection) requires(CollumSize == 4 && RowSize == 4 && Repeats == 1 && std::same_as) { Vector R2 = eyeDirection.Normalize(); Vector R0 = upDirection.Cross(R2); R0 = R0.Normalize(); Vector R1 = R2.Cross(R0); Vector NegEyePosition = -eyePosition; float D0 = R0.Dot(NegEyePosition); float D1 = R1.Dot(NegEyePosition); float D2 = R2.Dot(NegEyePosition); MatrixRowMajor M; M.m[0][0] = R0.v[0]; M.m[1][0] = R0.v[1]; M.m[2][0] = R0.v[2]; M.m[3][0] = D0; M.m[0][1] = R1.v[0]; M.m[1][1] = R1.v[1]; M.m[2][1] = R1.v[2]; M.m[3][1] = D1; M.m[0][2] = R2.v[0]; M.m[1][2] = R2.v[1]; M.m[2][2] = R2.v[2]; M.m[3][2] = D2; M.m[0][3] = 0; M.m[1][3] = 0; M.m[2][3] = 0; M.m[3][3] = 1; return M; } static MatrixRowMajor Rotation(Vector vector) requires(CollumSize == 4 && RowSize == 4 && Repeats == 1 && std::same_as) { return Rotation(vector.x, vector.y, vector.z); } Vector TransformNormal(Vector V) requires(CollumSize == 4 && RowSize == 4 && Repeats == 1 && std::same_as) { Vector Z = Vector(V.z, V.z, V.z); Vector Y = Vector(V.y, V.y, V.y); Vector X = Vector(V.x, V.x, V.x); Vector Result = Z * Vector(m[2][0], m[2][1], m[2][2]); Result = Y * Vector(m[1][0], m[1][1], m[1][2]) + Result; Result = X * Vector(m[0][0], m[0][1], m[0][2]) + Result; return Result; } }; } template <> struct std::formatter> : std::formatter { auto format(const Crafter::MatrixRowMajor& obj, format_context& ctx) const { return std::formatter::format(std::format("{{{}, {}, {}, {}\n{}, {}, {}, {}\n{}, {}, {}, {}\n{}, {}, {}, {}}}", obj.m[0][0], obj.m[0][1], obj.m[0][2], obj.m[0][3], obj.m[1][0], obj.m[1][1], obj.m[1][2], obj.m[1][3], obj.m[2][0], obj.m[2][1], obj.m[2][2], obj.m[2][3], obj.m[3][0], obj.m[3][1], obj.m[3][2], obj.m[3][3] ), ctx); } };